Abstract

The plant ATP binding cassette (ABC) transporters are one of the integral membrane proteins responsible for uptake and allocation of a wide range of metabolites and xenobiotics including heavy metals (e.g. zinc, manganese and cadmium). They play multiple roles in plant growth, development and environmental stress responses. Although the ABC transporters have been identified in model plants such as Arabidopsis and rice, they are have not been annotated and identified in rapeseed (Brassica napus) and also, little is known about functionality of these metal transporters. B. napus is an important oil crop ranking the third largest source of vegetable oil worldwide. Importantly, it is long considered as a desirable candidate for phytoremediation owning to its massive dry weight productivity and moderate Cd accumulation. In this study, we identified 314 ABC protein genes from B. napus using bioinformatics and high-throughput sequencing. Eight subfamilies including ABCA-G and ABCI have been categorized. The ABCG proteins constitute the largest subfamily with 116 members, and the ABCB and ABCC subfamilies ranks second and third with 69 and 47 members, respectively. Analyses of ABCs in B. napus genome reveal that their evolutional expansion was through localized allele duplications. Most of the ABC genes (74.2%, 233/314) were validated by RNA-sequencing rapeseed seedlings. Among the 233 profiled BnaABCs, 132 genes were differentially expressed (>1.5 fold change, p < 0.05) and 84 genes were significantly induced under Cd stress. Analyses of specific cis-elements in the upstream of eight representative genes show diverse motifs, which potentially respond to environmental stress, hormone responsiveness and other development signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.