Abstract

BackgroundThe ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity.ResultsWe utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005).ConclusionsWe present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter gene members between ferns and other plant taxa is surprising and merits further investigation. Discussed is the potential exploitation of ABC transporters in plant biotechnology, with an emphasis on crops.Electronic supplementary materialThe online version of this article (doi:10.1186/s12896-016-0277-6) contains supplementary material, which is available to authorized users.

Highlights

  • The adenosine triphosphate (ATP)-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants

  • While the pfam search was effective in ATP-binding cassette (ABC) transporter gene member discovery, there was not a clear delineation in e-value scores between known gene family members and other genes

  • All 1295 transcriptome samples contained at least one putative unique ABC transporter gene member with 97,149 ABC transporters identified across all samples

Read more

Summary

Introduction

The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. The ATP-binding cassette (ABC) transporter family is one of the largest known protein superfamilies in biology, which is represented in all living organisms [1,2,3,4,5,6,7]. Shared among members within the ABC transporter protein superfamily is the ability to hydrolyze adenosine triphosphate (ATP), which is used in a wide array of functions, including DNA repair, RNA translocation, and most commonly, active transport of a wide variety of substrates across various types of membranes in cells [3]. The NBD is present in all three structural types and contains many key conserved motifs: Walker A, Q-loop, Walker B, D-loop, switch H-loop, and a signature motif (LSGGQ). The signature motif (LSGGQ) is exclusively found in ABC proteins, which enables ABC proteins to be distinguished from other ATPases [7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.