Abstract
We propose a meta-analysis scheme for identifying differentially expressed genes in Oral Squamous Cell Carcinoma (OSCC) from different microarray studies. We detect a subset of relevant features and further classify samples under two experimental conditions (i.e healthy and cancer samples) for better patient stratification. A well-established meta-analysis method is adopted and gene expression data sets are derived from a public functional genomics data repository. Our primary aim is the accurate identification of up- and down-regulated genes in order to extract valuable biological information concerning the changes in expression between healthy and cancer samples. According to our results and the extracted informative gene list, a high classification accuracy of healthy and OSCC tumors is achieved with as few genes as possible. Furthermore, the proposed scheme implies that the combination of datasets from different origins may reduce the estimated percentage of false predictions, while the power of gene identification and disease classification is increased.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have