Abstract

Specific antibodies against the components of desmosomes, the adhesive junctions of epithelial cells, have been used to determine which components are located on the cell surface. Three criteria have been used: fluorescent antibody staining, immuno-gold labelling and electron microscopy, and quantitative measurements of antibody binding using [125I]protein A. When these techniques were applied to living Madin-Darby bovine kidney (MDBK) cells, antibodies against only two desmosomal components, glycoproteins of approximately 115 X 10(3) Mr and 100 X 10(3) Mr, bound to the cell surface. Antibodies against all other components, the 230 and 205 X 10(3) Mr proteins (desmoplakins), the 150 X 10(3) Mr glycoprotein and the 82 and 86 X 10(3) Mr proteins reacted in fluorescent antibody staining only after cells had been fixed and made permeable. MDBK cells were cultured in the presence of univalent fragments (Fab') of anti-desmosomal antibodies for periods from 24 h to 72 h. After these times cells were fixed, made permeable, and stained with anti-desmoplakin antibody to assay for desmosome formation. Fab' derived from anti-100 X 10(3) Mr protein specifically inhibited desmosome formation, whereas Fab's from anti-desmoplakin, anti-150 X 10(3) Mr and anti-82 and 86 X 10(3) Mr proteins were without effect. We conclude that the 100 X 10(3) Mr and the immunologically related 115 X 10(3) Mr components are located on the cell surface and are directly involved in cell-cell adhesion. We have named them desmocollins to denote that they are involved in the adhesive function of desmosomes. The modulation of desmocollin distribution during monolayer formation and establishment of epithelial polarity has also been studied. Fluorescent and immuno-gold labelling using Fab' or IgG at 4 degrees C revealed that desmocollins were initially evenly dispersed over the cell surface. Staining with IgG at 37 degrees C caused the desmocollins to "patch' but not to "cap'. With the establishment of confluency, desmocollins were gradually removed from the upper surfaces of the cells (or masked and rendered inaccessible to antibody) being confined to the lateral and probably basal regions of the cells. Treatment of confluent monolayers with 3 mM-EGTA rendered the desmocollins stainable, probably by causing their release from lateral constraint. Desmocollin staining at the cell surface was not appreciably reduced during 5 h of EGTA treatment, suggesting that desmocollins, unlike desmosomal plaques, may not be internalized after junction breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.