Abstract

The McrB restriction system in Escherichia coli K12 causes sequence-specific recognition and inactivation of DNA containing 5-methylcytosine residues. We have previously located the mcrB gene near hsdS at 99 min on the E. coli chromosome and demonstrated that it encodes a 51 kDa polypeptide required for restriction of M.AluI methylated (A-G-5mC-T) DNA. We show here, by analysis of maxicell protein synthesis of various cloned fragments from the mcrB region, that a second protein of approximately 39 kDa is also required for McrB-directed restriction. The new gene, designated mcrC, is adjacent to mcrB and located distally to hsdS. The McrB phenotype has been correlated previously with restriction of 5-hydroxy-methyl-cytosine (HMC)-containing T-even phage DNA that lacks the normal glucose modification of HMC, formally designated RglB (for restriction of glucoseless phage). This report reveals a difference between the previously correlated McrB and RglB restriction systems: while both require the mcrB gene product only the McrB system requires the newly identified mcrC-encoded 39-kDa polypeptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.