Abstract

PurposeOvarian cancer, manifested by malignant ascites, is the most lethal gynaecological cancer. Suspended ascites-derived spheroids may contribute to ovarian cancer metastasis. MicroRNAs (miRNAs) are also associated with ovarian cancer metastasis. Here, we aimed to investigate the differentially expressed miRNAs (DE-miRNAs) in ascites-derived spheroids compared with primary tumour tissues, which may regulate ovarian cancer metastasis.MethodsThe DE-miRNAs between ovarian cancer primary tumour tissues and ascites-derived spheroids were identified by GEO2R screening in samples from 3 high-grade serous ovarian cancer (HGSOC) patients of dataset GSE65819. We used MiRTarBase, TargetScanHuman7.2 and STRING to predict the target hub genes of DE-miRNAs and DAVID to perform functional analysis of hub genes. ALGGEN PROMO and TransmiR v2.0 were used to predict transcription factors (TFs) that potentially regulate DE-miRNAs expression. The observed differences in DE-miRNAs expression were validated with samples from 12 HGSOC patients and 2 ovarian cancer cell lines using PCR. The functions of DE-miRNAs on ovarian cancer progression were verified by invasion, adherent, and angiogenesis assays.ResultsThrough bioinformatics screening and experimental validation, miR-199a-3p, miR-199b-3p, miR-199a-5p, miR-126-3p and miR-145-5p were identified as being significantly downregulated in ascites-derived spheroids compared with primary tumour tissues. In addition, TFAP2A was identified as a potentially common upstream TF regulating the expression of the above mentioned DE-miRNAs. The overexpression of miR-199a-3p, miR-199b-3p, miR-199a-5p lead to invasion inhibition, and the overexpression of miR-126-3p, miR-145-5p, miR-199a-5p and miR-199b-3p lead to adhesion inhibition of suspended ovarian cancer cells. High-expressed miR-126-3p, miR-199a-3p, miR-199a-5p and miR-199b-3p contributed to apoptosis of suspended ovarian cancer cells.ConclusionThe downregulated expression of miR-199a-3p, miR-199b-3p, miR-199a-5p, miR-126-3p and miR-145-5p in ascites-derived spheroids plays a key role in promoting ovarian cancer progression, which may represent novel molecules for targeted therapy for ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call