Abstract

Detection of multiple unusual observations such as outliers, high leverage points and influential observations (IOs) in regression is still a challenging task for statisticians due to the well-known masking and swamping effects. In this paper we introduce a robust influence distance that can identify multiple IOs, and propose a sixfold plotting technique based on the well-known group deletion approach to classify regular observations, outliers, high leverage points and IOs simultaneously in linear regression. Experiments through several well-referred data sets and simulation studies demonstrate that the proposed algorithm performs successfully in the presence of multiple unusual observations and can avoid masking and/or swamping effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.