Abstract
In linear regression it is a common practice of measuring influence of an observation is to delete the case from the analysis and to investigate the change in the parameters or in the vector of forecasts resulting from this deletion. Pena (2005) introduced a new idea to measure the influence of an observation based on how this observation is being influenced by the rest of the data. In this article we propose a new influence measure extending the idea of Pena to group deletion for identifying multiple influential observations in linear regression. We investigate the usefulness of the proposed technique by two well-referred data sets, an artificial large data with high-dimension and heterogeneous sample points and by reporting a Monte Carlo simulation experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.