Abstract

Since the seminal paper by Cook (1977) in which he introduced Cook's distance, the identification of influential observations has received a great deal of interest and extensive investigation in linear regression. It is well documented that most of the popular diagnostic measures that are based on single-case deletion can mislead the analysis in the presence of multiple influential observations because of the well-known masking and/or swamping phenomena. Atkinson (1981) proposed a modification of Cook's distance. In this paper we propose a further modification of the Cook's distance for the identification of a single influential observation. We then propose new measures for the identification of multiple influential observations, which are not affected by the masking and swamping problems. The efficiency of the new statistics is presented through several well-known data sets and a simulation study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.