Abstract

Diamondback moth (Plutella xylostella), a worldwide migratory pest that is developing strong resistance to various chemical insecticides. It has been determined that four natural pyrazines isolated from Allium tuberosum showed significant repellent activity to P. xylostella, but the molecular target still unknown. In the present study, a novel synthetic route for 2,3-dimethyl-6-(1-hydroxy)-pyrazine which has the most significant repellent activity with a purity of 90.60% was established. Simultaneously, the bioassay result declared that the repellent grade was IV at a dosage of 0.01 mg which was the same as to the published data. Transcriptomics analysis detected 1643 upregulated and 3837 downregulated genes in P. xylostella antennae following this pyrazine exposure. Then, 2142 differentially expressed genes were annotated using Gene Ontology and 2757 genes were annotated by Kyoto Encyclopedia of Genes and Genomes. Moreover, this procedure identified 84 odour perception-related genes, 58 odorant receptor (OR) genes including 57 conventional ORs and the odorant receptor co-receptor (Orco, atypical odorant receptor) gene, and 26 odorant-binding protein (OBP) genes. Based on quantitative real time PCR (RT-qPCR) and differential expression results, 9 OR genes including the Orco were cloned and characterised. In summary, this study provides important basis for the utilization of pyrazines as the main active ingredients or lead compounds to developing new botanical pesticides, which will reduce application of chemical pesticides and postpone the development of resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call