Abstract

Eriochloa villosa (Thunb.) Kunth is a troublesome weed widely distributed in maize (Zea mays L.) fields in Northeast China. Many populations of E. villosa have evolved resistance to nicosulfuron herbicides, which inhibit acetolactate synthase (ALS). The objectives of this research were to confirm that E. villosa is resistant to nicosulfuron and to investigate the basis of nicosulfuron resistance. Whole-plant dose–response studies revealed that the R population had not developed a high level of cross-resistance and exhibited greater resistant (25.62-fold) to nicosulfuron than that of the S population and had not yet developed a high level of cross-resistance. An in vitro ALS activity assay demonstrated that the I50 of nicosulfuron was 6.87-fold greater in the R population than the S population. However, based on ALS gene sequencing, the target ALS gene in the R population did not contain mutations. Quantitative real-time polymerase chain reaction (qRT–PCR) revealed that ALS gene expression between the R and S populations was significantly different after nicosulfuron application, but no differences were observed in the gene copy number. After the cytochrome P450 inhibitor malathion or the GST inhibitor NBD-Cl was applied, the resistant E. villosa population exhibited increased sensitivity to nicosulfuron. Based on the activities of GSTs and P450s, the activities of the R population were greater than those of the S population after nicosulfuron application. This is the first report that the resistance of E. villosa to ALS inhibitors results from increased target gene expression and increased metabolism. These findings provide a theoretical foundation for the effective control of herbicide-resistant E. villosa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.