Abstract

This study introduces a novel mechanobiology assay, named “i-Rheo-optical assay”, that integrates rheology with optical microscopy for analysing the viscoelastic properties of multicellular spheroids. These spheroids serve as three-dimensional models resembling tissue structures. The innovative technique enables real-time observation and quantification of morphological responses to applied stress using a cost-effective microscope coverslip for constant compression force application. By bridging a knowledge gap in biophysical research, which has predominantly focused on the elastic properties while only minimally exploring the viscoelastic nature in multicellular systems, the i-Rheo-optical assay emerges as an effective tool. It facilitates the measurement of broadband viscoelastic compressional moduli in spheroids, here derived from cancer (PANC-1) and non-tumoral (NIH/3T3) cell lines during compression tests.This approach plays a crucial role in elucidating the mechanical properties of spheroids and holds potential for identifying biomarkers to discriminate between healthy tissues and their pathological counterparts. Offering comprehensive insights into the biomechanical behaviour of biological systems, i-Rheo-optical assay marks a significant advancement in tissue engineering, cancer research, and therapeutic development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call