Abstract

BackgroundTissue injury due to hypoxia and/or free radicals is common in a variety of disease processes. This cross-sectional study aimed to investigate effect of chronic kidney diseases (CKD) and hemodialysis (HD) on hypoxia and oxidative stress biomarkers.MethodsForty pediatric patients with CKD on HD and 20 healthy children were recruited. Plasma hypoxia induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) were measured by specific ELISA kits while, total antioxidant capacity (TAC), total peroxide (TPX), pyruvate and lactate by enzymatic/chemical colorimetric methods. Oxidative stress index (OSI) and lactate/pyruvate (L/P) ratio were calculated.ResultsTAC was significantly lower while TPX, OSI and VEGF were higher in patients at before- and after-dialysis session than controls. Lactate and HIF-1α levels were significantly higher at before-dialysis session than controls. Before dialysis, TAC and L/P ratio were lower than after-dialysis. In before-dialysis session, VEGF correlated positively with pyruvate, HIF-1α and OSI correlated positively with TPX, but, negatively with TAC. In after-dialysis session, HIF-1α correlated negatively with TPX and OSI; while, OSI correlated positively with TPX.ConclusionsCKD patients succumb considerable tissue hypoxia with oxidative stress. Hemodialysis ameliorated hypoxia but lowered antioxidants as evidenced by decreased levels of HIF-1α and TAC at before- compared to after-dialysis levels.

Highlights

  • Tissue injury due to hypoxia and/or free radicals is common in a variety of disease processes

  • We suggested that impaired response to tissue hypoxia and oxidative stress would be major determinants to clinical outcomes in such patients

  • Total antioxidant capacity was significantly lower while total peroxide (TPX), Oxidative stress index (OSI) and vascular endothelial growth factor (VEGF) were significantly higher in patients at before- and after-dialysis session than healthy controls

Read more

Summary

Introduction

Tissue injury due to hypoxia and/or free radicals is common in a variety of disease processes. This cross-sectional study aimed to investigate effect of chronic kidney diseases (CKD) and hemodialysis (HD) on hypoxia and oxidative stress biomarkers. A decrease in oxygen tensions of the spares HIF-1α that translocates into nucleus. There, it heterodimerizes with HIF-1β and binds to the hypoxic response elements of target gene regulatory sequences. This induces the transcription of genes implicated in the control of metabolism and angiogenesis, as well as apoptosis and cellular stress response [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call