Abstract
Given an untrimmed video, temporal sentence localization (TSL) aims to localize a specific segment according to a given sentence query. Though respectable works have made decent achievements in this task, they severely rely on dense video frame annotations, which require a tremendous amount of human effort to collect. In this paper, we target another more practical and challenging setting: one-shot temporal sentence localization (one-shot TSL), which learns to retrieve the query information among the entire video with only one annotated frame. Particularly, we propose an effective and novel tree-structure baseline for one-shot TSL, called Multiple Hypotheses Segment Tree (MHST), to capture the query-aware discriminative frame-wise information under the insufficient annotations. Each video frame is taken as the leaf-node, and the adjacent frames sharing the same visual-linguistic semantics will be merged into the upper non-leaf node for tree building. At last, each root node is an individual segment hypothesis containing the consecutive frames of its leaf-nodes. During the tree construction, we also introduce a pruning strategy to eliminate the interference of query-irrelevant nodes. With our designed self-supervised loss functions, our MHST is able to generate high-quality segment hypotheses for ranking and selection with the query. Experiments on two challenging datasets demonstrate that MHST achieves competitive performance compared to existing methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have