Abstract

This paper studies the problem of temporal moment localization in a long untrimmed video using natural language as the query. Given an untrimmed video and a query sentence, the goal is to determine the start and end of the relevant visual moment in the video that corresponds to the query sentence. While most previous works have tackled this by a propose-and-rank approach, we introduce a more efficient, end-to-end trainable, and proposal-free approach that is built upon three key components: a dynamic filter which adaptively transfers language information to visual domain attention map, a new loss function to guide the model to attend the most relevant part of the video, and soft labels to cope with annotation uncertainties. Our method is evaluated on three standard benchmark datasets, Charades-STA, TACoS and ActivityNet-Captions. Experimental results show our method outperforms state-of-the-art methods on these datasets, confirming the effectiveness of the method. We believe the proposed dynamic filter-based guided attention mechanism will prove valuable for other vision and language tasks as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.