Abstract
BackgroundCorticotropin-releasing hormone (CRH) plays an important role in regulating the mammalian stress response. Two of the most extensively studied neuronal populations that express CRH are in the hypothalamus and amygdala. Both regions are involved in the stress response, but the amygdala is also involved in mediating response to fear and anxiety. Given that both hypothalamus and amygdala have overlapping functions, but their CRH-expressing neurons may respond differently to a given perturbation, we sought to identify differentially expressed genes between two neuronal cell types, amygdalar AR-5 and hypothalamic IVB cells. Thus, we performed a microarray analysis. Our hypothesis was that we would identify differentially expressed transcription factors, coregulators and chromatin-modifying enzymes.ResultsA total of 31,042 genes were analyzed, 10,572 of which were consistently expressed in both cell lines at a 95% confidence level. Of the 10,572 genes, 2,320 genes in AR-5 were expressed at ≥ 2-fold relative to IVBs, 1,104 genes were expressed at ≥2-fold in IVB relative to AR-5 and 7,148 genes were expressed at similar levels between the two cell lines. The greatest difference was in six mitochondrial DNA-encoded genes, which were highly abundant in AR-5 relative to IVB cells. The relative abundance of these genes ranged from 413 to 885-fold according to the microarray results. Differential expression of these genes was verified by RTqPCR. The differentially expressed mitochondrial genes were cytochrome b (MT-CYB), cytochrome c oxidase subunit 1 and 2 (MT-CO1 and MT-CO2) and NADH-ubiquinone oxidoreductase chain 1, 2, and 3 (MT-ND1, MT-ND2, MT-ND3).ConclusionAs expected, the array revealed differential expression of transcription factors and coregulators; however the greatest difference between the two cell lines was in genes encoded by the mitochondrial genome. These genes were abundant in AR-5 relative to IVBs. At present, the reason for the marked difference is unclear. The cells may differ in mtDNA copy number, number of mitochondria, or regulation of the mitochondrial genome. The specific functions served by having such different levels of mitochondrial expression have not been determined. It is possible that the greater expression of the mitochondrial genes in the amygdalar cells reflects higher energy requirements than in the hypothalamic cell line.
Highlights
Corticotropin-releasing hormone (CRH) plays an important role in regulating the mammalian stress response
Out of the 10,572 genes, 2,320 genes were expressed at ≥2-fold, relative to expression in IVBs; 1,104 genes were expressed at ≥2-fold, relative to expression in AR-5 and 7,148 genes were expressed at similar levels in the two cell lines
Given that we only tested 6 genes and the mitochondrial genome encodes 13 protein coding genes, one of our goals is to study how the remaining mitochondrial genes respond to glucocorticoid treatment
Summary
Corticotropin-releasing hormone (CRH) plays an important role in regulating the mammalian stress response. Two of the most extensively studied neuronal populations that express CRH are in the hypothalamus and amygdala Both regions are involved in the stress response, but the amygdala is involved in mediating response to fear and anxiety. Given that both hypothalamus and amygdala have overlapping functions, but their CRH-expressing neurons may respond differently to a given perturbation, we sought to identify differentially expressed genes between two neuronal cell types, amygdalar AR-5 and hypothalamic IVB cells. The appropriate cellular response is determined by the ability to successfully meet the physiological demands of stress, and is paramount for survival This is a multi-system process, and in mammals, activation of the hypothalamicpituitary-adrenal (HPA) axis plays a key role. The behavioral response is initiated in part by the amygdala, which contains CRH-expressing neurons and mediates fear-associated behavior such as fight or flight. Due to the wide range of effects of CRH, its expression needs to be tightly regulated, and its dysregulation is associated with profound neuropsychiatric consequences, in particular, mood disorders such as depression and anxiety [5]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have