Abstract
Polaritons have a demonstrated impact on nanophotonic applications in the midinfrared through visible spectral range. Surface phonon-polaritons (SPhPs) offer a way to bring the potential of polaritons to the longer infrared wavelengths. Strontium titanate (STO) is a perovskite polar dielectric with diverse technologically advantageous properties and it can support SPhPs in a uniquely broad spectral range of the far infrared. Despite these advantages, STO has mostly been overlooked as a nanophotonic material. In this work we investigate SPhP propagation in STO in the far-infrared through midinfrared spectral range using broadband, near-field nanospectroscopy. We developed a tabletop, laser sustained plasma light source that enabled us to obtain amplitude and phase resolved hyperspectral line scan maps of SPhPs across the surface of the STO sample. Analytical modeling of experimental data reveals the dispersion characteristics of SPhPs in STO. This work establishes STO as a platform for perovskite-based broadband far-infrared and terahertz nanophotonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.