Abstract

The hydrothermal dewatering (HTD) process was carried out using 16 coal samples obtained from several regions in Indonesia. This research aims to identify the dominant parameters that influence ash deposition during coal combustion in a boiler or gasifier due to the HTD process. This research was conducted due to the lack of clear and comprehensive information regarding this issue. Therefore, to understand the effect of HTD on ash deposition, an analysis of the chemical composition of ash and the ash melting temperature (AFT) was carried out. To verify the data obtained from the experimental analysis, statistical methods such as paired sample t-test and primary component analysis were applied to obtain the dominant parameters influencing ash deposition due to HTD. Eight parameters, namely SiO2, Fe2O3, slagging viscosity index (SR), Babcock index (Rs), initial deformation temperature, softening temperature, hemispherical temperature, and fluid temperature under oxidative conditions, have the greatest influence on ash deposition due to the HTD process. Based on the average values of SR and Rs, raw coal and processed coal samples have the same ash deposition trend. On the other hand, based on AFT under oxidation conditions, processed coal has a higher AFT, indicating that the tendency for ash deposition is lower than raw coal. Therefore, the HTD process can be used to improve the quality of low-grade coal. As an implication, low-grade coal, which has not been widely utilized in Indonesia, due to several constraints regarding its characteristics, through the HTD process can be optimized where coal utilization is a bridge towards the use of green energy which is being intensively pursued.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.