Abstract

Two brown coals from China were dewatered under hydrothermal dewatering (HTD) conditions at 250–320°C for 1h in a 2L autoclave. The hydrothermally dewatered products were used to prepare coal water slurry (CWS) with a lower viscosity than brown raw coal slurry. Moreover, the coal rank and heat value of the brown coal increased as the inherent moisture and oxygen content decreased during the HTD process. The maximum solid concentration of CWS prepared from XiMeng coal increased from 45.7% to 59.3%, whereas that of CWS prepared from BaoTou coal increased from 53.7% to 62.1%, after being dewatered at 320°C. The improvement in the slurryability of brown coal significantly depended on the final temperature of the HTD process, the mechanism of which can be explained by the chemical analysis of oxygen functional groups, zeta potential, and the contact angle of the surface between coal and water. The oxygen functional groups, the oxygen/carbon ratio and hydrogen/carbon ratio in brown coal decreased, indicating that the coal rank was upgraded during the HTD process. As a result, both the point of zero charge and the contact angle increased, implying that the HTD products were highly hydrophobic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call