Abstract

Triclosan (TCS) was treated under hydrothermal conditions at 240 °C for 4 h, either dissolved in aqueous solution or preadsorbed onto activated carbon (AC). Hydrothermal conversion of dissolved TCS led to formation of 2,8-dichlorodibenzo-p-dioxin (DCDD). Its yield was dependent on the pH of the aqueous solution increasing from 38% at pH 4 up to 67% at pH 12. Adsorption of TCS at neutral pH on three different kinds of ACs, powder, granular, and felt, changed the reactivity of the TCS molecule under hydrothermal conditions significantly. The conversion of TCS and, in particular, the formation of DCDD was inhibited in the presence of ACs. When TCS was adsorbed on powdered AC, the preferred reaction pathway was the reductive hydrodechlorination. The findings described herein may be valuable for a potential regeneration method for loaded AC based on hydrothermal treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.