Abstract

Fulvic acid, the most soluble and active humic substance, is widely used as an agent to remediate contaminated soils and improve soil fertility. However, the influence of fulvic acid (FA), as a microbial carbon source, on carbon and nitrogen cycles in paddy soils remains elusive. Therefore, to investigate it, an incubation experiment was conducted. Gas analyses indicated that the carbon dioxide and methane emissions were enhanced in FA treatment, which increased up to 94.08-fold and 5.06-fold, respectively. 15N-labeling experiments revealed that nitrogen fixation capability was promoted (1.2-fold) to reduce the carbon and nitrogen imbalance due to fulvic acid amendment. Metagenomic analysis further revealed that gene abundances of degradation of lignin-like compounds, gallate degradation, methanogenesis, nitrogen fixation, and urea hydrolysis increased, while the bacterial ammonia oxidation and anaerobic ammonium oxidation decreased, caused by FA application. Metabolic reconstruction of metagenome-assembled genomes revealed that Azospirillaceae, Methanosarcinaceae, and Bathyarchaeota, with higher abundance in FA treatment, were the key microorganisms to maintain the carbon and nitrogen balance. The metabolic pathways of fulvic acid degradation and coupled nitrogen fixation and retention were constructed. Collectively, our results provided novel insights into the theoretical basis of the use of humic substances for reducing nitrogen fertilization and climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.