Abstract

We conducted Hydrothermal carbonization (HTC) of simulated food waste under different reaction conditions (180 to 220 °C, 15 and 30 min), with the aim of recovering both fatty acids from the hydrochar and nutrients from the aqueous-phase products. HTC of the simulated food waste produced hydrochar that retained up to 78% of the original fatty acids. These retained fatty acids were extracted from the hydrochar using ethanol, a food-grade solvent, and gave a net recovery of fatty acid of ∼ 50%. The HTC process partitioned more than 50 wt% of the phosphorus and around 38 wt% of the nitrogen into the aqueous-phase products. A reaction path consistent with decarboxylation predominated during HTC under all of the reaction conditions investigated. A path consistent with dehydration was also observed, but only for the more severe reaction conditions. This work illustrates the potential that HTC has for valorization of food waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call