Abstract

The synthetic superabsorbent polymers (SAPs) market is experiencing significant growth, with applications spanning agriculture, healthcare, and civil engineering, projected to increase from $9.0 billion USD in 2019 to $12.9 billion USD by 2024. Despite this positive trend, challenges such as fluctuating raw material costs and lower biodegradability of fossil fuel-based SAPs could impede further expansion. In contrast, cellulose and its derivatives present a sustainable alternative due to their renewable, biodegradable, and abundant characteristics. Lignocellulosic biomass (LCB), rich in cellulose and lignin, shows promise as a source for eco-friendly superabsorbent polymer (SAP) production. This review discusses the applications, challenges, and future prospects of SAPs derived from lignocellulosic resources, focusing on the cellulose extraction process through fractionation and various modification and crosslinking techniques. The review underscores the potential of cellulose-based SAPs to meet environmental and market needs, offering a viable path forward in the quest for more sustainable materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.