Abstract

In this work, a novel strategy for food waste valorization was evaluated from an environmental life-cycle perspective. A system based on acid-assisted hydrothermal carbonization of food waste combined with the exploitation of hydrochar by combustion and process water through nutrient recovery stage and subsequent anaerobic digestion, was assessed and compared with stand-alone anaerobic digestion as the reference system. This combination of processes aims to recover both nutrients in a stage of struvite precipitation from process water and energy through hydrochar and biogas combustion. Both systems were modeled in Aspen Plus® to identify and quantify their most relevant input and output flows and subsequently evaluate their environmental performance through the life cycle assessment methodology. The novel combined system was found to generally involve a more favorable environmental performance than the reference stand-alone configuration, which would be closely linked to the substitution of hydrochar for fossil fuels. In addition, the impacts associated with soil application of the struvite produced in the integrated process would also be reduced compared to the use of the digestate generated in the stand-alone anaerobic digestion process. Following these results and the evolving regulatory framework for biomass waste management, mainly in the field of nutrient recovery, combined process based on acid-assisted hydrothermal treatment plus nutrient recovery stage and anaerobic digestion is concluded to be a promising circular economy concept for food waste valorization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.