Abstract
Hydrogen production from the steam reforming reactions of ethanol and glycerol has been studied over ceria-supported Ir, Co and Ni catalysts with respect to the nature of the active metals and the reaction pathways. For ethanol steam reforming, ethanol dehydrogenation to acetaldehyde and ethanol decomposition to methane and carbon monoxide were the primary reactions at low temperatures, depending on the active metals. At higher temperatures where all the ethanol and the intermediate compounds, like acetaldehyde and acetone, were completely converted into hydrogen, carbon oxides and methane, steam reforming of methane and water gas shift became the major reactions. The Ir/CeO 2 catalyst was significantly more active and selective toward hydrogen production, and the superior catalytic performance was interpreted in terms of the intimated contact between Ir particles and ceria based on the ceria-mediated redox process. Additionally, hydrogen production from steam reforming of glycerol was also examined over these ceria-supported metal catalysts, and the Ir/CeO 2 catalyst again showed quite promising catalytic performance with hydrogen selectivity of more than 85% and 100% glycerol conversion at 400 ∘ C .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.