Abstract
Hydrogen is an important utility in the production of clean fuels as low-sulfur gasoline and diesel. The combination of low-sulfur fuel specifications and reduced production of hydrogen in catalytic reformers make hydrogen management a critical issue. In this paper a systematic approach for the retrofit design of hydrogen networks in refineries was proposed. The methodology is based upon mathematical optimization of a superstructure and maximizing the amount of hydrogen recovered across a site. The techniques account fully for pressure constraints as well as the existing equipment. The optimum placement of new equipment such as compressors and purification units is also considered. Total annual cost and fresh hydrogen required by the refinery are employed as the optimizing objects. Equations obtained from superstructure method are solved with mixed-integer nonlinear programming of the general algebraic modeling system. In this work the Tehran refinery was considered as a case study. The results of optimization show that the 28% reduction was achieved in hydrogen production of north section and this is 35.7% for south section of refinery. Also adding the new hydrogen recovery unit in hydrogen network will cause 20% reduction in total costs of north and 31.2% in south sections.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have