Abstract

This paper examines the flame dynamics of vented deflagration in stratified hydrogen layers. It also compares the measured combustion pressure transients with 3D GOTHIC simulations to assess GOTHIC's capability to simulate the associated phenomena. The experiments were performed in the Large-Scale Vented Combustion Test Facility at the Canadian Nuclear Laboratories. The stratified layer was formed by injecting hydrogen at a high elevation at a constant flow rate. The dominant parameters for vented deflagrations in stratified layers were investigated. The experimental results show that significant overpressures are generated in stratified hydrogen–air mixtures with local high concentration even though the volume-averaged hydrogen concentration is non-flammable. The GOTHIC predictions capture the overall pressure dynamics of combustion very well, but the peak overpressures are consistently over-predicted, particularly with higher maximum hydrogen concentrations. The measured combustion overpressures are also compared with Molkov's model prediction based on a layer-averaged hydrogen concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.