Abstract

The distribution and eventual stratification of hydrogen released during a hypothetical severe accident and the stability of the stratification formed in the early phase of the transient is of particular safety concern in Light Water Reactors (LWRs). The large-scale containment test facility PANDA (PSI, Switzerland) has been used to perform a series of four tests examining the erosion and break-up of stratified light-gas layers in the frame of the OECD SETH-2 project. The ultimate goal of the test program is to set-up an experimental data base of high-quality and high-density data that can challenge and validate 3D containment codes like e.g. GOTHIC, GASFLOW or MARS and validate the applicability of CFD codes like FLUENT or CFX for LWR containment problems. The test series discussed here focuses on the erosion of a stratified, helium-rich layer by horizontal steam injection at different locations below the layer. An approach with step-wise increasing complexity has been chosen to examine this problem allowing control over the rate of pressure increase and the occurrence of condensation. The step-wise approach enables a thorough understanding of the influence of different phenomena like position of steam injection, diffusion, pressurization and condensation on the behavior and erosion of the stratified layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.