Abstract

Hydrogen deflagration in confined spaces is an important safety issue. The dispersion of a stratified layer of hydrogen due to molecular diffusion is studied. It represents an important class of problems related to long term behaviour of hydrogen release in confined spaces. Diffusion being a slow process, gives an upper bound on the time taken for the stratified layer to mix with air below. A method, based on four indices, namely, average mole fraction (of hydrogen), non-uniformity index, deflagration volume fraction and deflagration pressure ratio, developed recently by the authors, is used to provide vital temporal information on mixing of the stratified layer with air below and formation of flammable cloud in the enclosure. In the present paper, stratified layers of different thickness are considered and the temporal evolutions of the above indices are plotted against diffusion Fourier number. The results in non-dimensional form provide an upper bound of the time that would be required to form a uniform mixture and to attain a state with respect to deflagration potential for enclosures of different sizes. This estimate is an important input for planning mitigation measures before the accident and for post accident investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.