Abstract

We present a study of thermal noise of commercially available atomic force microscopy (AFM) cantilevers in air and in water. The purpose of this work is to investigate the oscillation behavior of a clamped AFM microlever in liquids. Up to eight vibration modes are recorded. The experimental results are compared to theoretical predictions from the hydrodynamic functions corresponding to rigid transverse oscillations of an infinitely long rectangular beam. Except for the low-frequency modes, the known hydrodynamic functions cannot describe the amount of dissipated energy due to the liquid motion induced by the cantilever oscillation. The observed variation of the damping coefficient is smaller than the one predicted. The difference at higher modes between the mentioned theoretical description and experimental results is discussed with the help of numerical solutions of the three-dimensional Navier–Stokes equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call