Abstract

Upwind flux vector splitting is presented for hydrodynamic modeling of 1D and 2D deep-submicron semiconductor devices. This approach splits the Jacobian matrices of the hydrodynamic system into two parts corresponding to forward and backward running fluxes, and an upwind difference is applied to each split flux. Influences of the boundary discontinuity of electric field and velocity on transport results in the 2D deep-submicron devices are discussed. The study demonstrates that the developed method is capable of handling large discontinuity of the boundary conditions, and highly non-linear source terms in short-channel semiconductor devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.