Abstract
The behavior of heated bentonite buffer is critical for the security and long-term performance of a geological repository for high-level radioactive waste (HLW). While laboratory column experiments have been conducted to investigate compacted bentonite and coupled THMC (thermal-hydro-mechanical and chemical) processes for a moderate temperature range of up to 100 °C, data for a higher temperature range are limited. Understanding bentonite behavior and coupled THMC processes under higher temperatures (e.g., up to 200 °C) could allow for a more economic repository design and would expand the data and knowledge base for more reliable modeling. In this study, a bench-scale experiment was conducted in a compacted bentonite column experiencing both heating up to 200 °C in the center and hydration from a sand-clay boundary surrounding the column. During the experiment run for 1.5 years, frequent X-ray computed tomography (CT) scanning of bentonite provided insights into the spatiotemporal evolution of (1) hydration/dehydration, (2) clay swelling/shrinkage, (3) displacement, and (4) mineral precipitation. After the experiment, a comprehensive post-dismantling characterization of bentonite samples was conducted. Results showed that the bentonite hydration was axi-symmetrical despite the initial heterogeneity due to packing, confirming the ability of bentonite to seal fast flow/transport paths. Compared to a non-heated control experiment, the heated column showed greater CT density variations along the radial distance, indicating that homogenization of bentonite might be more difficult if a temperature gradient is maintained in the repository. Precipitation of an anhydrite layer occurred in the inner hot zone, pointing to potential concerns about salt precipitation causing canister corrosion. Ultimately, the experiments provided a high-resolution window into the strongly dynamic and coupled behavior of bentonite exposed to heating, hydration and swelling, which will be valuable for improving modeling of coupled processes, especially for the early state of a HLW repository.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.