Abstract

AbstractState‐of‐the‐art solar energy harvesting systems based on photovoltaic technology require constant illumination for optimal operation. However, weather conditions and solar illumination tend to fluctuate. Here, a device is presented that extracts electrical energy from such light fluctuations. The concept combines light‐induced heating of gold nanodisks (acting as plasmonic optical nanoantennas), and an organic pyroelectric copolymer film (poly(vinylidenefluoride‐co‐trifluoroethylene)), that converts temperature changes into electrical signals. This hybrid device can repeatedly generate current pulses, not only upon the onset of illumination, but also when illumination is blocked. Detailed characterization highlights the key role of the polarization state of the copolymer, while the copolymer thickness has minor influence on performance. The results are fully consistent with plasmon‐assisted pyroelectric effects, as corroborated by combined optical and thermal simulations that match the experimental results. Owing to the tunability of plasmonic resonances, the presented concept is compatible with harvesting near infrared light while concurrently maintaining visible transparency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.