Abstract

AbstractPolarimetric infrared (IR) detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy is discovered in quasi‐1D narrow‐bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3 and Sr9/8TiS3. In these materials, the critical role of atomic‐scale structure modulations in the unconventional electrical, optical, and thermal properties raises the broader question of the nature of other materials that belong to this family. To address this issue, for the first time, high‐quality single crystals of a largely unexplored member of the A1+xTiX3 (X = S, Se) family, BaTiSe3 are synthesized. Single‐crystal X‐ray diffraction determined the room‐temperature structure with the P31c space group, which is a superstructure of the earlier reported P63/mmc structure. The crystal structure of BaTiSe3 features antiparallel c‐axis displacements similar to but of lower symmetry than BaTiS3, verified by the polarization dependent Raman spectroscopy. Fourier transform infrared (FTIR) spectroscopy is used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (E ⊥ c) and extraordinary (E ‖ c) optical axes is quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence Δn ∼ 0.9, BaTiSe3 emerges as a new candidate for miniaturized birefringent optics for mid‐wave infrared to long‐wave infrared imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.