Abstract

Summary Recently, the coupling of ferroelectrics with electrochemical reactions has attracted increasing interest for harvesting waste heat. The change of polarization of a ferroelectric with temperature can be used to influence chemical reactions, especially when the material is cycled near its Curie temperature. In this perspective, we introduce the principle of pyroelectric controlled electrochemical processes by harvesting waste heat energy and explore their potential electrochemical applications, such as water treatment, air purification, and hydrogen generation. As an emerging approach for driving electrochemical reactions, the presence of thermal fluctuations and/or transient waste heat in the environment has the potential to be the primary thermal input for driving the change in polarization of a pyroelectric to release charge for such reactions. There are a number of avenues to explore, and we summarize strategies for forming multi-functional or hybrid materials and future directions such as selecting pyroelectrics with low Curie temperature (

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call