Abstract
Technological progress increasingly envisions the use of robots interacting with people in everyday life. Human–robot collaboration (HRC) is the approach that explores the interaction between a human and a robot, during the completion of a common objective, at the cognitive and physical level. In HRC works, a cognitive model is typically built, which collects inputs from the environment and from the user, elaborates and translates these into information that can be used by the robot itself. Machine learning is a recent approach to build the cognitive model and behavioural block, with high potential in HRC. Consequently, this paper proposes a thorough literature review of the use of machine learning techniques in the context of human–robot collaboration. 45 key papers were selected and analysed, and a clustering of works based on the type of collaborative tasks, evaluation metrics and cognitive variables modelled is proposed. Then, a deep analysis on different families of machine learning algorithms and their properties, along with the sensing modalities used, is carried out. Among the observations, it is outlined the importance of the machine learning algorithms to incorporate time dependencies. The salient features of these works are then cross-analysed to show trends in HRC and give guidelines for future works, comparing them with other aspects of HRC not appeared in the review. • Machine learning is assuming an important role in human–robot collaboration. • Features of human–robot collaboration works using machine learning are reported. • It is crucial to use machine learning techniques sensitive to time dependencies. • Stacking multiple machine learning models is an approach suggested to pursue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.