Abstract

There are millions of people who lose their life due to several types of fatal diseases. Cancer is one of the most fatal diseases which may be due to obesity, alcohol consumption, infections, ultraviolet radiation, smoking, and unhealthy lifestyles. Cancer is abnormal and uncontrolled tissue growth inside the body which may be spread to other body parts other than where it has originated. Hence it is very much required to diagnose the cancer at an early stage to provide correct and timely treatment. Also, manual diagnosis and diagnostic error may cause of the death of many patients hence much research are going on for the automatic and accurate detection of cancer at early stage. In this paper, we have done the comparative analysis of the diagnosis and recent advancement for the detection of various cancer types using traditional machine learning (ML) and deep learning (DL) models. In this study, we have included four types of cancers, brain, lung, skin, and breast and their detection using ML and DL techniques. In extensive review we have included a total of 130 pieces of literature among which 56 are of ML-based and 74 are from DL-based cancer detection techniques. Only the peer reviewed research papers published in the recent 5-year span (2018-2023) have been included for the analysis based on the parameters, year of publication, feature utilized, best model, dataset/images utilized, and best accuracy. We have reviewed ML and DL-based techniques for cancer detection separately and included accuracy as the performance evaluation metrics to maintain the homogeneity while verifying the classifier efficiency. Among all the reviewed literatures, DL techniques achieved the highest accuracy of 100%, while ML techniques achieved 99.89%. The lowest accuracy achieved using DL and ML approaches were 70% and 75.48%, respectively. The difference in accuracy between the highest and lowest performing models is about 28.8% for skin cancer detection. In addition, the key findings, and challenges for each type of cancer detection using ML and DL techniques have been presented. The comparative analysis between the best performing and worst performing models, along with overall key findings and challenges, has been provided for future research purposes. Although the analysis is based on accuracy as the performance metric and various parameters, the results demonstrate a significant scope for improvement in classification efficiency. The paper concludes that both ML and DL techniques hold promise in the early detection of various cancer types. However, the study identifies specific challenges that need to be addressed for the widespread implementation of these techniques in clinical settings. The presented results offer valuable guidance for future research in cancer detection, emphasizing the need for continued advancements in ML and DL-based approaches to improve diagnostic accuracy and ultimately save more lives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call