Abstract

Cholera toxin is unable to elevate cyclic AMP levels in intact human platelets despite being very efficacious in this respect in other mammalian cells; in the presence of 0.5 mM-isobutylmethylxanthine, we found that 3-6nM-cholera toxin over 3h at 37 degrees C elevated platelet cyclic AMP from 33 +/- 13 to 39 +/- 12pmol/mg of protein (means +/- S.D.; n = 12). We have investigated the basis for this lack of response. 125I-labelled cholera toxin bound to platelets both saturably and with high affinity (Kd congruent to 60pM; Bmax. congruent to 50fmol/mg of protein). Incubation of platelets with the putative cholera toxin receptor monosialoganglioside GM1 enhanced 125I-labelled cholera toxin binding at least 40-fold but facilitated only a minimal (less than or equal to 3-fold) elevation of platelet cyclic AMP levels. In contrast, dithiothreitol-activated cholera toxin markedly stimulated adenylate cyclase activity in platelet membranes. Platelet cytosol both enhanced stimulation of adenylate cyclase activity by activated cholera toxin (A1 subunit) and supported stimulation by the A1-A2 subunit of cholera toxin. Neither GTP nor NAD+, both necessary for response to cholera toxin, was lacking in intact platelets. However, we found that platelets were unable to cleave cholera toxin to the active A1 subunit (as assessed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis). By contrast, murine S49 lymphoma cells were able to generate the A1 subunit with a time course that closely resembled the kinetics of toxin-mediated cyclic AMP accumulation in these cells. Thus we conclude that human platelets are defective in their ability to process surface-bound cholera toxin. These results indicate that binding of cholera toxin to surface receptors is necessary, but not sufficient, for expression of the toxin effect and the generation of the A1 subunit of the toxin may be rate-limiting for expression of cholera toxin response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.