Abstract

In dispersed acini from guinea pig pancreas cholera toxin bound reversibly to specific membrane binding sites to increase cellular cyclic AMP and amylase secretion. Cholera toxin did not alter outflux of 45Ca or cellular cyclic AMP. Binding of 125I-labeled cholera toxin could be detected within 5 min; however, cholera toxin did not increase cyclic AMP or amylase release until after 40 min of incubation. There was a close correlation between the dose vs. response curve for inhibition of bindind of 125I-labeled cholera toxin by native toxin and the action of native toxin on cellular cyclic AMP. With different concentrations of cholera toxin, maximal stimulation of amylase release occurred when the increase in cellular cyclic AMP was approximately 35% of maximal. Cholera toxin did not alter the increase in 45Ca outflux or cellular cyclic GMP caused by cholecystokinin or carbachol but significantly augmented the increase in cellular cyclic AMP caused by secretion or vasoactive intestinal peptide. The increase in amylase secretion caused by cholera toxin plus secretin or vasoactive intestinal peptide was the same as that with cholera toxin alone. On the other hand, the increase in amylase secretion caused by cholera toxin plus cholecystokinin or carbachol was significantly greater than the sum of the increases caused by each agent alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call