Abstract

The present experiments examined the relationship between cholera toxin and TSH stimulation of the adenylate cyclase system in bovine thyroid tissue. Preincubation of thyroid slices for 20 min at 4 C with a maximal concentration of cholera toxin (100 microgram/ml) did not impair the subsequent stimulation of cAMP by submaximal amounts of TSH (1 mU/ml) during a 5-min incubation at 37 C. Incubation of cholera toxin or TSH with mixed gangliosides, followed by the addition of thyroid slices resulted in inhibition of the cholera toxin but not the TSH stimulation of cAMP formation. Previous exposure of thyroid slices to TSH induced refractoriness to subsequent stimulation of cAMP formation by TSH, but the response to cholera toxin was unchanged. NAD is necessary for cholera toxin, but not TSH, stimulation of adenylate cyclase. In the absence of NAD, cholera toxin inhibited the effect of maximal concentrations of TSH and prostaglandin E1 on adenylate cyclase activity but had no effect on NaF stimulation. In the presence of NAD, the stimulation of adenylate cyclase activity of bovine thyroid plasma membranes by a maximal amount of TSH was not influeced by maximal amounts of cholera toxin. Cholera toxin had a biphasic action on the binding of [125I]iodo-TSH, with low concentrations enhancing and high concentrations inhibiting binding. TSH augmented the binding of [125I]iodo-cholera toxin over the range of 1-100 mU/tube. Cholera toxin at 10 microgram/ml maximally inhibited binding. In addition to the requirement for ribosylation of adenylate cyclase, the present results indicate that the mechanisms of action of TSH and cholera toxin on cAMP formation are different.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.