Abstract

With the growth of Renewable Energy (RE) generation, the operation of power grids has become increasingly complex. One solution could be automated grid operation, where Deep Reinforcement Learning (DRL) has repeatedly shown significant potential in Learning to Run a Power Network (L2RPN) challenges. However, most existing DRL algorithms have only considered individual actions at the substation level. In contrast, we propose a more holistic approach by proposing specific Target Topologies (TTs) as actions. These topologies are selected based on their robustness. In this paper, we present a search algorithm to find the TTs and upgrade our previously developed DRL agent CurriculumAgent (CAgent) to a novel topology agent. We compare our upgrade with the CAgent and significantly increase its L2RPN score by 10%. Further, we achieve a 25% better median survival time with our TTs included. Later analysis shows that almost all TTs are close to the base topology, explaining their robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.