Abstract
Virion formation and egress are sophisticated processes that rely on the spatial and temporal organization of host cell membranes and the manipulation of host machineries involved in protein sorting, membrane bending, fusion, and fission. These processes result in the formation of infectious virions, defective particles, and various vesicle-like structures. In herpes simplex virus 1 (HSV-1) infections, virions and capsid-less particles, known as light (L)-particles, are formed. HSV-1 infection also stimulates the release of particles that resemble extracellular vesicles (EVs). In productively infected cells, most EVs are generated through the CD63 tetraspanin biogenesis pathway and lack viral components. A smaller subset of EVs, generated through the endosomal sorting complexes required for transport (ESCRT) pathway, contains both viral and host factors. Viral mechanisms tightly regulate EV biogenesis, including the inhibition of autophagy-a process critical for increased production of CD63+ EVs during HSV-1 infection. Mutant viruses that fail to suppress autophagy instead promote microvesicle production from the plasma membrane. Additionally, the viral protein ICP0 (Infected Cell Protein 0) enhances EV biogenesis during HSV-1 infection. The different types of particles can be separated by density gradients due to their distinct biophysical properties. L-particles and ESCRT+ EVs display a pro-viral role, supporting viral replication, whereas CD63+ EVs exhibit antiviral effects. Overall, these studies highlight that HSV-1 infection yields numerous and diverse particles, with their type and composition shaped by the ability of the virus to evade host responses. These particles likely shape the infectious microenvironment and determine disease outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have