Abstract
• LNG exports are expected to continue to expand, with global estimates ranging from 450 to 700 million tons per annum by 2040. • A global, hybrid life cycle sustainability assessment of the LNG supply chain is performed. • MRIO analysis, Aspen HYSYS, and LNG maritime transport tools are integrated for the first time. • LNG loading (export terminal) is found to be responsible for the highest carbon footprint. • Around 73% of human health impact comes from SRU and TGTU units. Integrating sustainability into the distribution network process is a significant problem for any industry hoping to prosper or survive in today's fast-paced environment. Since gas is one of the world's most important fuel sources, sustainability is more important for the gas industry. While such environmental and economic effects have been extensively researched in the literature, there is little emphasis on the full social sustainability of natural gas production and supply chains in terms of the triple bottom line. This research aims to perform the first hybrid life cycle sustainability assessment (LCSA) of liquefied natural gas and evaluate its performance from the natural gas extraction stage to LNG regasification after delivery through maritime transport carriers. LCSA is used for estimating the social, economic, and environmental impacts of processes, and our life cycle model included the multi-region input–output analysis, Aspen HYSYS, and LNG maritime transport operations sustainability assessment tools. The results spot the light on the most contributors of CO 2 -eq emission. It is found that LNG loading (export terminal) is the source that generated the highest carbon footprint, followed by the MDEA sweetening unit with the contribution of 40% and 24%, respectively. Socially, around 73% of human health impact comes from SRU and TGTU units which are the most contributors to the particulate matter emission. Based on the interpretation of life cycle results, the environmental indicators show better performance in the pre-separation unit and LNG receiving terminal representing a sustainability factor equal to 1. In terms of social and economic impacts, the natural gas extraction stage presents the best performance among all other stages, with a sustainability factor equal to 1. Based on this study's findings, an integrated framework model is proposed. Various suggestions for sustainability strategies and policies that consider business sustainability and geopolitics risk are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.