Abstract
Among geophysical methods, the electrical resistivity tomography (ERT) method is one of the most commonly used for the study of hydrodynamical processes. The geophysical literature relates several laboratory-scale applications of this method. Unlike the measurements taken at the field scale, few authors have taken an interest in errors associated with apparent electrical resistivity, especially in the case of ERT data acquired in the laboratory. The objective of this paper is to show that laboratory errors related to the positioning of electrodes and the geometry of cells are significant on apparent resistivity measurements. The embedment and the position of the electrode were evaluated to quantify their impact on electrical resistivity measurement. To assess these impacts, the authors propose a 3D numerical modelling investigation based on the complete design of a laboratory test cell.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have