Abstract

Motor neurons are known to affect muscle growth and fiber type profile (fast/slow, oxidative/glycolytic) by regulating muscle gene expression. However, the mechanism by which the information contained in specific action potential patterns is decoded by the transcriptional machinery of muscle fiber nuclei remains to be established. This is a basic issue in nerve/muscle biology, which has major implications in neurology, sport medicine and aging. We describe here a general strategy aimed at identifying the signal transduction pathways mediating the effects of nerve activity. This approach is based on the overexpression of constitutively active or dominant negative transduction factors in regenerating skeletal muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.