Abstract

Sun et al. [J. Chem. Phys. 144, 191101 (2016)] suggested that common density-functional approximations (DFAs) should exhibit large energy errors for excited states as a necessary consequence of orbital nodality. Motivated by self-interaction corrected density-functional calculations on many-electron systems, we continue their study with the exactly solvable 1s, 2p, and 3d states of 36 hydrogenic one-electron ions (H-Kr35+) and demonstrate with self-consistent calculations that state-of-the-art DFAs indeed exhibit large errors for the 2p and 3d excited states. We consider 56 functionals at the local density approximation (LDA), generalized gradient approximation (GGA) as well as meta-GGA levels, and several hybrid functionals such as the recently proposed machine-learned DM21 local hybrid functional. The best non-hybrid functional for the 1s ground state is revTPSS. As predicted by Sun et al., the 2p and 3d excited states are more difficult for DFAs, and LDA functionals turn out to yield the most systematic accuracy for these states among non-hybrid functionals. The best performance for the three states overall is observed with the BHandH global hybrid GGA functional, which contains 50% Hartree-Fock exchange and 50% LDA exchange. The performance of DM21 is found to be inconsistent, yielding good accuracy for some states and systems and poor accuracy for others. Based on these results, we recommend including a variety of one-electron cations in future training of machine-learned density functionals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.