Abstract

Theoretical investigations into the adsorption of molecules on metal surfaces play a pivotal role in the development of more efficient corrosion inhibitors. This study offers a novel approach by combining Density Functional Tight Binding (DFTB), Molecular Dynamics (MD) simulations, and conductor-like screening model for realistic solvation (COSMO-RS) calculations to comprehensively assess the interaction and diffusion properties of glycine (Gly), 2,2′-azanediyldiacetic acid (IDA), and 5-aminopentanoic acid (5-APA) with two 1,3,5-triazine (Tris) derivatives (Tris-Gly and Tris-IDA) for corrosion protection of carbon steel in acidic medium. The solvation properties of these molecules were evaluated alongside their interaction strength with the Fe(1 1 0) surface, considering both neutral and protonated forms. DFTB simulations revealed a clear trend in interaction energies, following the order: Tris-IDA > Tris-Gly > 5-APA > IDA > Gly. It ranges from −1.191 eV to −1.853 eV, with the highest stability observed for protonated Tris-IDA (−1.853 eV), while neutral Glycine exhibits the lowest interaction energy (−1.263 eV). While these theoretical results diverged slightly from experimental observations, with Tris-Gly outperforming Tris-IDA, this discrepancy was attributed to steric effects and solvent interactions. The DFTB results also indicated strong covalent interactions, particularly involving acetic groups, between the inhibitors’ orbitals and the iron’s 3d orbitals. MD simulations further demonstrated the impact of protonation on inhibitor mobility, with reduced diffusion coefficients due to enhanced electrostatic interactions and hydrogen bonding. COSMO-RS solvation analysis confirmed the strong hydrogen bonding capabilities of these molecules with water. Overall, this study elucidates the mechanisms of corrosion inhibition by integrating multiple simulation techniques, providing key molecular insights that can guide the design of more effective corrosion inhibitors. The findings emphasize the significance of electronic interactions and molecular structure in enhancing inhibitor performance, making this a valuable contribution to corrosion science.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.