Abstract

The effects of expired bupropion on the corrosion protection of carbon steel in hydrochloric acid (1.0 M) and sulfuric acid (0.5 M) solutions were examined by Fourier transform infrared (FTIR) spectroscopy, Tafel polarization and electrochemical impedance spectroscopy (EIS). Bupropion concentrations in both acid solutions were raised, which improved corrosion prevention. Bupropion was a mixed inhibitor because it retarded the anodic and cathodic processes, as indicated by polarization data. The inhibition efficiency decreased with the increasing temperature from 25 to 55 °C. In the presence of bupropion, the activation energies of corrosion in both acid solutions increased. The thermodynamic quantities were deduced from the influence of temperature on the corrosion process of carbon steel in both acid media. Bupropion adsorption on carbon steel followed the Langmuir adsorption isotherm. The polarization data yielded outcomes consistent with the results arising from impedance measurements. FTIR spectroscopy showed the active sites of bupropion molecule during adsorption on the alloy surface. The theoretical study and molecular dynamics simulation of bupropion was done by a density functional theory (DFT) approach to realize the effects of molecular structure on the inhibitive action of bupropion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call