Abstract

A method of uncertainty quantification on a quantum circuit using three samples for the Rh(111)-catalyzed CO oxidation reaction is demonstrated. Three parametrized samples of a reduced, linearized microkinetic model populate a single block diagonal matrix for a quantum circuit. This approach leverages the logarithmic scaling of the number of qubits with respect to matrix size. The Harrow, Hassidim, and Lloyd (HHL) algorithm for solving linear systems is employed, and the results are compared with the classical results. This application area of uncertainty quantification in chemical kinetics can experience a quantum advantage using the method reported here, although issues related to larger systems are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call