Abstract

Mixing iodide and bromide in three-dimensional metal-halide perovskites is a facile strategy for achieving red light-emitting diodes (LEDs). However, these devices often face challenges such as instability in electroluminescence spectra and low brightness due to phase segregation in mixed-halide perovskites. Here, we demonstrate spectrally stable and bright red perovskite LEDs by substituting some of the halide ions with pseudohalogen thiocyanate ions (SCN-). We find that SCN- can occupy halogen vacancies, thereby releasing microstrain and passivating defects in the perovskite crystals. This leads to the suppression of mixed-halide phase segregation under electrical bias. As a result, the red perovskite LEDs exhibit a high brightness of >35 000 cd m-2 with stable Commission Internationale de l'Eclairage (CIE) coordinates of (0.713, 0.282). This brightness surpasses that of the best-performing red perovskite LEDs, showing great promise for advancing perovskite LEDs in display and lighting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call